A comparison between the Metric Dimension and Zero Forcing Number of Line Graphs
نویسندگان
چکیده
The metric dimension dim(G) of a graph G is the minimum number of vertices such that every vertex of G is uniquely determined by its vector of distances to the chosen vertices. The zero forcing number Z(G) of a graph G is the minimum cardinality of a set S of black vertices (whereas vertices in V (G)\S are colored white) such that V (G) is converted entirely to black after finitely many applications of “the color-change rule”: a white vertex is converted black if it is the only white neighbor of a black vertex. Zero forcing number was introduced and used to bound the minimum rank of graphs by the “AIM Minimum Rank – Special Graphs Work Group”. We investigate the metric dimension and the zero forcing number of line graphs. First, we determine the metric dimension of the line graphs of wheel graphs and bouquet of circles. Second, we determine the zero forcing number of the line graphs of complete graphs, wheel graphs, and bouquet of circles. We prove that Z(G) ≤ 2Z(L(G)) for a simple and connected graph G. Further, we show that Z(G) ≤ Z(L(G)) when G is a tree or when G contains a Hamiltonian path and has a certain number of edges. Finally, we compare the metric dimension with the zero forcing number of a line graph by demonstrating a couple of inequalities between the two parameters. We conclude with some open problems.
منابع مشابه
On the zero forcing number of some Cayley graphs
Let Γa be a graph whose each vertex is colored either white or black. If u is a black vertex of Γ such that exactly one neighbor v of u is white, then u changes the color of v to black. A zero forcing set for a Γ graph is a subset of vertices Zsubseteq V(Γ) such that if initially the vertices in Z are colored black and the remaining vertices are colored white, then Z changes the col...
متن کاملA CHARACTERIZATION FOR METRIC TWO-DIMENSIONAL GRAPHS AND THEIR ENUMERATION
The textit{metric dimension} of a connected graph $G$ is the minimum number of vertices in a subset $B$ of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $B$. In this case, $B$ is called a textit{metric basis} for $G$. The textit{basic distance} of a metric two dimensional graph $G$ is the distance between the elements of $B$. Givi...
متن کاملFuzzy Forcing Set on Fuzzy Graphs
The investigation of impact of fuzzy sets on zero forcing set is the main aim of this paper. According to this, results lead us to a new concept which we introduce it as Fuzzy Zero Forcing Set (FZFS). We propose this concept and suggest a polynomial time algorithm to construct FZFS. Further more we compute the propagation time of FZFS on fuzzy graphs. This concept can be more efficient to model...
متن کاملThe metric dimension and girth of graphs
A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...
متن کاملAnti-forcing number of some specific graphs
Let $G=(V,E)$ be a simple connected graph. A perfect matching (or Kekul'e structure in chemical literature) of $G$ is a set of disjoint edges which covers all vertices of $G$. The anti-forcing number of $G$ is the smallest number of edges such that the remaining graph obtained by deleting these edges has a unique perfect matching and is denoted by $af(G)$. In this paper we consider some specifi...
متن کامل